Feasible Model Predictive Control with Bounded Disturbances

نویسنده

  • Morten Hovd
چکیده

This paper shows how to calculate feasible regions, parameterized in terms for the present state xk, for MPC controllers for constrained linear systems. The dependence of the feasible region on the prediction horizon is also made clear. It is also shown how the procedure may be modified to find guaranteed feasible regions in the presence of unknown, bounded disturbances. These ’robust’ feasible regions are used to propose a very simple MPC controller which achieves robust feasibility. Copyright c 2005 Author

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS

In this paper‎, ‎a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance‎. ‎The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances‎. ‎The continuous system with time-delay is discretized using uncertainty po...

متن کامل

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Constrained linear systemwithdisturbance : stability under disturbance feedback ?

This paper proposes a control parametrization under Model Predictive Controller (MPC) framework for constrained linear discrete time systems with bounded additive disturbances. The proposed approach has the same feasible domain as that obtained from parametrization over the family of time-varying state feedback policies. In addition, the closed-loop system is stable in the sense that the state ...

متن کامل

Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control

Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006